
N89- 19834

Testing Expert Systems
C. L. Chang and R.A. Stachowitz

Lockheed Missiles & Space Company, Inc.
Lockheed Artificial Intelligence Center, 0/90-06, B/30E

2100 East St. Elmo Road
Austin, Texas 78744

Abstract

Software quality is of primary concern in all large-scale expert system development
efforts. Building appropriate validation and test tools for ensuring software reliability of
expert systems is therefore required.

The Expert Systems Validation Associate (EVA) is a validation system under
development at the Lockheed Artificial Intelligence Center. EVA provides a wide range
of validation and test tools to check the correctness, consistency, and completeness of
an expert system.

Testing is a major function of EVA. It means executing an expert system with test cases
with the intent of finding errors. In this paper, we describe many different types of testing
such as function-based testing, structure-based testing, and data-based testing. We
describe how appropriate test cases may be selected in order to perform good and
thorough testing of an expert system.

INTRODUCTION

It has been repeatedly shown that the expert system technology in
artificial intelligence can be used to implement many different ap-
plications such as diagnostic systems, battle management sys-
tems, machine and robot control systems, monitoring systems,
design systems, manufacturing systems, etc. Regardless of
whether the expert systems are stand-alone or real-time em-
bedded systems, we need to be ensured that they are reliable,
correct, consistent and complete. For this purpose, the Lockheed
Artificial Intelligence Center started in 1986 the Expert Systems
Validation Associate (EVA) project [Stachowitz et al. 1987a,
1987b, 1987~1. EVA provides a wide range of validation and test
tools to check the correctness, consistency and completeness of
an expert system.

Testing is a major function of EVA. It means executing an expert
system with test cases with the intent of finding errors. A very
good example is the Target Generation Facility (TGF) which
provides simulated, real-time controllable aircraft targets to Air
Traffic Control Systems under test at the FAA Technical Center.

In this paper, we consider many different types of testing such as
function-based testing, structure-based testing and data-based
testing. We describe how appropriate test cases may be selected
in order to perform good and thorough testing of an expert system.

BACKGROUND

Expert systems are usually developed incrementally. The initial re-
quirements for an expert system may be clearly stated. However,
as the expert system evolves and is evaluated, the requirements
may be changed or new requirements may be added. In many
cases, even if the requirements are not changed, there are no
known algorithms for solving the problem. For example, there are
no algorithms for performing parallel parking even though the in-
itial and final positions of a car can be specified precisely. There-
fore, an expert system may have to be developed in repeated
cycles of implementation, evaluation and modification steps. In
the parallel parking example, a fuzzy (approximate) algorithm,
represented by rules, may be tried first. The algorithm continues to

be modified until a satisfactory performance is achieved. The goal
of the test case generator is to generate "appropriate" test cases
from the requirements specifications or the expert system itself for
users, expert collaborators, or system builders to perform the
thorough evaluations during the development or acceptance
phase of the system production cycle.

Testing of conventional software [DeMillo et al. 1981, 1987, Hetzel
1984, Miller and Howden 1984, Zeil and White 19801 has been
known for a long time. As stated in [Hetzel 19841, software testing
is a creative and difficult task. It requires very good knowledge
about the system being tested. Typically, the requirements cannot
be processed automatically, or knowledge is buried inside the
codes of the system. Therefore, test cases are conventionally
generated manually. This is certainly tedious and error-prone.

On the other hand, an expert system is usually implemented in a
high-level language that supports high-level concepts such as ob-
jects, relations, categories, functional mappings, data types and
data constraints. This knowledge can be used to generate test
cases automatically.

TYPES OF TEST CASES

In this paper, we consider three types of test cases, namely,
function-based test cases, sfructure-based test cases, and data-
based test cases.

To generate function-based test cases for an expert system, one
requires knowledge about the system's functions. Function-based
testing is usually regarded as black box testing because it tests
the external input-output behavior (specifications) of the system. In
order to generate function-based test cases automatically. the
generator must be provided with knowledge about the input-output
specifications.

Structure-based test cases explore the relations between rules.
An expert system can be represented by a knowledge base con-
sisting of facts and rules, which can be connected to make a con-
nection graph. An arc in the connection graph denotes a match
between a literal in the left hand side (LHS) of a rule and a literal in

131

PRECEDING PAGE BLANK NOT FILMED

the right hand side (RHS) of a rule. Note that a fact can be con-
sidered as a rule without a RHS. Structure-based test cases are
based upon the structure of the connection graph. The idea is to
generate a set of test cases to exercise every rule in the connec-
tion graph at least once.

The difference between function-based and structure-based test-
ing can be illustrated by using an electrical circuit: Function-based
testing means checking whether the light goes on when we throw
the switch, while structure-based testing means inspecting
whether all parts are connected properly into the circuit. To per-
form function-based testing, we do not need to look inside the cir-
cuit box. Therefore, it is called black box testing. On the other
hand, since we need to look inside the circuit box to see how parts
are connected, structure-based testing is called white box test-
ing.

Data-based test cases are based upon data definitions for the ex-
pert system. The data definitions consist of data declarations and
data constraints. The data declarations are schema statements
for data domains, relations and objects. A data constraint is
specified by a logic formula using object-level and/or meta-level
predicates.

FUNCTION-BASED TESTING

Input data to an expert system are usually represented by facts
that are instances of schemas. Let us call these schemas input
schemas. Each test case contains a set of facts of the input
schemas. For each set of input facts, the expert system will
produce a set of output facts (data), which are instance of output
schemas.

The input and output schemas may not be declared exp/icit/y.
They may be implicitly contained in the connection graph of the
expert system. In this case, we consider only the rule part of the
connection graph. In a connection graph, there are two kinds of
leaf nodes, namely, input nodes and output nodes. An input node
is a LHS-literal of a rule that is not connected to other RHS-literals.
An output node is a node representing a RHS-literal that is not
connected to any LHS-literals. The schemas of input and output
nodes will be considered as the input and output schemas,
respectively.

In order to thoroughly cover all different types of input test cases,
we must systematically categorize input and output data by explicit
declarations. For each set of input facts in certain categories, we
specify the expected output facts, or the expected categories of
the output facts, or the data constraints that the expected output
facts have to satisfy.

Consider the airline inquiry system in [Hetzel 19841. The specifica-
tions of the system are given as follows: The inputs are 1) a trans-
action identifying departure and destination cities and travel date,
and 2) tables of flight information showing flights available and
seats remaining. The system checks the flight tables for the
desired city. If there is no flight to that city, it prints message 1 "No
flight". If there is a flight, but seats are not available, it prints mes-
sage 2 "Sold out". If there is a flight and seats are available, it
displays that fact. Therefore, the expected ouput is either a flight
display, or message 1, or message 2.

For this example, the relational schema is:
flight(flight#, from-city, to-city, date, seats-reserved, capacity)

where flight# is a key. The data base contains a collection of
ground instances (facts) of the flight relation. To generate test
cases, we specify the following categories of flights:

category(flight,no-flight(X,Y,D)):- I' no flight from X t o Y ' /

A=(F# 1 fIight(F#,X,Y,D ,_,_)) , count(A)=O

category(flight.single(X.Y,D)) - /' single fhght from X to Y */

A=(F# 1 flighl(F#,X.Y,D,_,p)), count(A)=l

category(flight,multtple(X.Y.D)):- I' multple fhght ' I

A=(F# 1 fIight(F#,X.Y.D,p,p)], count(A) > 1

category(flight,full(F#,X,Y,D)):- P flight F# from X to Y i s full*/

category(flight,available(F#,X,Y,D)):- l'fligbt is available */

flight(F#,X,Y,D,S,C), count(S)=C.

flight(F#,X,Y,D,S,C), count(S) c C.

Similarly, the categories of the output on a computer display are:
category(output.one-line).

category(output,multiple-lines).

category(output.message-1).

category(output,message-2).

(Note that we use the Prolog syntax for representing facts and
rules, where a variable is written as a string beginning either with a
capital letter or "-".)

For each set of input facts (data) belonging to a certain combina-
tion of categories, we specify the expected output. For this ex-
ample, the input-output relationships specified in terms of
categories are given as follows:

(1) single & available --> one-line.

(2) multiple & available --> multiple-lines.

(3) no-flight --> message-1.

(4) single & full --> message-2.

(5) multiple & full --> message-2.

Based upon these functional specifications, the test case gener-
ator can generate the following test cases to cover different input
scenarios:

CASE 7A: Flight available (only flight to the city)

EXPECTED RESULT: Display one line.

CASE 78: Flight avilable (multiple flights to the city).

E X P f C E D RfSULT: Display multiple lines.

CASE.?: No flight.

EXPECTED RESULT: Message 1

CASE 3A: No seats (only flight to the city)

EXPECTED RESULT: Message 2.

CASE 38: No seats (multiple flights, all full).

EXPECTED RESULT: Message 2.

CASE 4: Flight available (one flight full, but another open).

EXPECTED RESULT: Display lines and Message 2.

Note that each of CASE 1A through 38 corresponds to one of the
input-output relationships specified above. However, CASE 4 is
generated by using the input-output relationships (2) and (4). This
is possible because the conditions in the input-output relationships
(2) and (4) are not mutually exclusive.

STRUCTURE-BASED TESTING

Another important source of test cases derives from the structure
of a knowledge base, namely, the connection graph. The advan-
tage of structure-based testing is that the generation of test cases

132

depends upon only the connection graph. It does not have to rely
upon other information such as input-output specification of the
system represented by the knowledge base.

The basic concept in structure-based testing is one of complete
coverage. The assumption is that every rule in the connection
graph in some way selves some purpose for handling certain
situations. Therefore, all the rules must be useful, Le., used some
time, and the goal of structure-based testing is to generate a set of
test cases to exercise every rule at least once. An algorithm for
generating such test cases follows:

(1) Generate the connection graph of the knowledge base.

(2) Generate the rule flow diagram from the connection graph.
Note that a rule flow diagram is a directed graph where nodes
denote rules, and arcs denote rule execution sequences.

(3) Create a set of paths in the flow diagram such that each
node (rule) is covered by at least one path in the set.

(4) Generate test cases to traverse these paths.

Consider a rule-based system that computes the grade of a stu-
dent from his answers to a quiz. The system compares his
answers with the expected answers, counts the number of right
answers, computes a numerical score, and then records the
grade. His answers are represented by studenf(Name.Answers),
and the expected answers are represented by
expectpquestions, Correct_answers). An instance of student
and an instance of expect constitutes an input to the system. The
rules for this system are given as follows:

(1) grade(Name,Grade):- student(Name,Answers),

expect(N-questions, Correct-answers),

right-answers(Answers, Correct-answers, N-rights),

Ratio is N-rights/N-questions,

Score is Ratio'100,

compute-grade(Score,Grade)

(2) right-answers([],[] ,O).
(3) right-answers([XlY], [XjZ], R1):-

right-answers(Y,Z,R),

R1 is R+1.

(4) right-answers(LIY], LIZ], R):- right-answers(Y,Z,R)

(5) compute-grade(Score,a):- Score>=90.

(6) computegrade(Score,b):- Score<9O, Score>=80.

(7) compute-grade(Score,c):- Score<8O, Score>=70.

(8) compute-grade(Score,f):- Score<70.

The rule flow diagram for these rules is shown in Figure 1. From
the rule flow diagram, we can construct, for example, a set of
paths, [1,3,4,2,81, [1,3,2,51, [1,4,3,3,3,2,71, and [1,3,4,3,3,3,2,61.
This set has a complete coverage of the rules, because every rule
appears in the set at least once. For each path in the set, we
collect all the conditions of the rules in the path, and find values
that satisfy the conditions. If such values exist, then the path can
be traversed, and the values can be used as a test case. The test
cases for the paths are shown in Table 1.

DATA-BASED TESTING

We now consider test cases that are derived from data definitions.
Such test cases are called data-based test cases. Data definitions
include data declarations and data constraints. In an expert sys-
tem shell, data declarations are specified by data schema state-

Figure 1. Rule Flow Diagram

TABLE 1. TEST CASES FOR COMPLETE COVERAGE

TEST CASES PATHS TRAVERSED

student(john, [yes,yes]).

expect(2, [yes,no]).

student(smith, [yes]).

expect(1, [yes]).

..

student(peter, [yes,yes,yes,no])

expect(4, [no,yes,yes,no]).

student(mary, [yes,no,yes,no,yes]). 1,3,4,3,3,3,2,6

expect(5, [yes,yes,yes,no,yes]).

ments. Since maintaining the integrity of facts and rules in a
knowledge base is important, we need also to specify the data
constraints that the facts and rules must satisfy. Any fact or rule
that violates the data constraint will not be inserted into the
knowledge base. We can use logical formulas to represent the
data constraints.

By means of the data declarations and data constraints in the ex-
pert system, we can generate good and bad test cases. A good
test case satisfies the data declarations and data constraints and
should be accepted by the experl system, while a bad test case
violates them and should be rejected by the expert system. Be-
cause the goal is to test the expert system with difficult examples,
we should generate some extreme cases that barely satisfy or vio-
late the data constraints, or contain large or small values.

Consider input data on triangles specified by

RELATIONAL SCHEMA:

triangle(side1 :number, side2:number, side3:number)

DATA CONSTRAINT:

triangle(X.Y,Z) A

X + Y > Z A

x + z > Y A

Y + Z > x.
133

The data constraint says that the sum of any two sides of a tri-
angle is greater than the remaining side. From the above data
declaration and data constraint, we can generate the following ex-
treme test cases. (Note that the first five test cases are bad, while
the last two are good.)

EXTREME TEST CASES COMMENTS

triangle(1, 1, 2)

triangle(0, 0,O) A point

triangle(4, 0, 3)

triangle(1, 2, 3.00001)

triangle(9170, 8942, 1)

triangle(.0001, .0001, .0001)

triangle(83127, 74326, 96652)

A straight line

A zero side

Close to a triangle

Very small angle

Very small triangle

Very large triangle

For an applicative system which takes an input and produces an
output, a test case means a simulated instance of input and its
expected output. However, for an imperative system that may al-
ter data structures or produce side effects, just generating test
cases of input is not enough. An imperative system can be
represented by a state machine. There are a number of states. For
each state, there are a certain number of actions that take the
state into other states. For the state machine, a test case will be
actually a test scenario that consists of an initial state, and a se-
quence of specific actions. The goal is to check if bad states will
be encountered when we run the state machine with the test
scenario. We note that a bad state means that the state violates
integrity constraints or a situation where no actions are available.

Consider the following example: Container A can hold 5 gallons of
water and container B 2 gallons of water. Initially, A is full and B is
empty. Assume that water can be poured from A to B, and B to the
drain. We would like to get to a final state where A is empty and B
is half-full. The initial and final states are shown in Figure 2.

Initial State

A

Final State

Figure 2. Initial and Final States

We use sfate(X,Y) to denote a state where X and Y are the
amounts of water in containers A and B, respectively, and use
pour(X,Y,Q) to denote an operation to pour Q gallons of water
from X into Y.

Let transition(Op,X, Y) denote that the operation Op changes state
X to state Y, and let reach(Seq,X,Y) denote that the sequence of
operations, Seq, changes state X to state Y.

The constraints on states and operations are specified as follows:
pour(a,b,X) A 0 ~ x 9 2 .

pour(b,drain,X) A O<X$2.

state(X,Y) A O<X<5 A O<Y<2.

From the constraints, we can generate the following test scenario:

state(5,O). initial state

pour(a,b,2), pour(a,b,2). input sequence

This is a bad test scenario because the second operation in the
input sequence will cause container B to overflow. If we had the
following knowledge base,

(1) transition(pour(a,b,Z). state(X,Y). state(U,V)) :-

z>o A

u=x-z A

V=Y+Z.

(2) transition(pour(b,drain.Y). state(X,Y), state(X,O)) :- Y > 0

(3) reach([Op],Sl ,S2) :- transition(Op,Sl,S2)

(4) reach((OplSeq1, S1, S3) :-

transition(Op,Sl ,S2),

reach(Seq,S2,S3).

the bad scenario would be "successfully" processed, because
Rule (1) is wrong. The correct version of the rule should be
(1') transition(pour(a,b,Z), state(X,Y), state(U,V)) :-

z>o A

u=x-z A

v=Y+z A

x>z A

v < 2

The correct rule does make sure that container B will not overflow.

CONCLUSION

Test cases of input values to an expert system can be generated
automatically. However, the expected output and performance for
each test case may not be known, or not clearly defined, or stated
in qualitative or narrative statements. In this case, the system's
output and performance for the generated (simulated) test cases
may have to be evaluated by independent human experts. The
experts' evaluation results can be stored and used with the test
cases again when the expert system is modified.

We have described systematic ways for automatic test case
generation. For large expert systems, this is essential because
manual approaches are tedious and possibly biased.

We have started work on implementing components of the test
case generator. First, we will generate structure-based test cases
because they do not depend upon specifications and
metaknowledge. Then, we will consider data-based and finally
function-based test cases.

134

REFERENCES

Bellman, K.L., and Walter, D.O. [1987] "Testing rule-based expert
systems", Technical Report, Knowledge-Based Systems Section,
Computer Science Laboratory, The Aerospace Corporation, Los
Angeles, Ca 90009-2957, November 1, 1987.

Chang, C.L. [1976] "DEDUCE --- A deductive query language for
relational data bases", in Pattern Recognition and Artificial
lntelligence (C.H. Chen, Ed.), Academic Press, Inc., New York,

Chang, C.L. [1978] "DEDUCE 2: Further investigations of deduc-
tion in relational data bases", in Logic and Data Bases(H. Gallaire
and J. Minker, Eds.), Plenum Publishing Corp., New York, 1978,

Chang, C.L. (19811 "On evaluation of queries containing derived
relations in a relational data base", in Advances in Data Base
Theory --- Volume 1 (H. Gallaire, J. Minker and J.M. Nicolas, Eds.)
Plenum Publishing Corp., 1981, pp.235-260.

Culbert. C., Riley, G., and Savely, R.T. [1987] "Approaches to the
verification of rule-based expert systems", Roc. of First Annual
Workshop on Space Operations Automation and Robotics, Hous-
ton, Texas, August 1987.

DeMillo, R.A., Hocking, D.E., and Merritt. M.J. [1981] "A com-
parison of some reliable test data generation procedures", GIT-
ICS-81/08, School of Information and Computer Science, Georgia
Institute of Technology, April 1981.

DeMillo, R.A., McCracken, W.M., Martin, R.J., and Passafiume,
J.F. [1987] Software Testing and Evaluation, The
Benjamin/Cummings Publishing Company, Inc., 2727 Sand Hill
Road, Menlo Park, California 98025.

Geissman, J.R., and Schultz, R.D. [1988] "Verification and valida-
tion of expert systems", A/ Expert, February 1988, pp.26-33.

Green, C.J.R., and Keyes, M.M. [1987] "Verification and validation
of expert systems", /E€€ Knowledge-Based Engineering & Expert
System (WESTEX-87), IEEE 87CH2463-8, 1987, pp.38-43.

Hetzel, W. [1984] The Complete Guide to Software Testing, QED
Information Sciences, Inc., Wellesley, Massachusetts, 1984.

Miller, E.F. [1987] "Expert system validation: Issues and
approaches", in Expert Systems and Their Applications, May
1987, Avignon, France.

Miller, E.F., and Howden, W. [1984] Software Testing and Valida-
tion Techniques, 2nd Edition, IEEE Computer Society Press,
1984.

Jacob, R.J.K., and Froscher, J.N. [1986] "Developing a software
engineering methodology for knowledge-based systems", NRL
Report 9019, Computer Science and Systems Branch, Information
Technology Division, Naval Research Laboratory, Washington,

Nguyen, T.A. [1987] "Verifying consistency of production
systems", Proc. of the 3rd lEEE Conference on A/ Applications,
February 1987, pp.4-8.

Nguyen, T.A., Perkins, W.A., Laffey, T.J., and Pecora, D. [1985]
"Checking an expert system's knowledge base for consistency

1976, pp.108-134.

pp.201-236.

D.C. 20375-5000.

and completeness", froc. of the 9th lnternational Joint Conference
on Artificial Intelligence, 1985, pp.375-378.

Stachowitz, R.A., and Combs, J.B. [1987a] "Validation of expert
systems", froc. of the 20th Hawaii lnternational Conference on
Systems Sciences, 1987, pp.686-695.

Stachowitz, R.A., Combs, J.B., and Chang, C.L. [1987b]
"Validation of knowledge-based systems", Proc. of the 2nd
AIANNASNUSAF Symposium on Automation, Robotics and Ad-
vanced Computing for the National Space Program, Arlington, Vir-
ginia, March 9-1 1, 1987.

Stachowitz, R.A., Chang, C.L., Stock, T., and Combs, J.B. [1987c]
"Building validation tools for knowledge-based systems,'' Roc. of
First Annual Workshop on Space Operations Automation and
Robotics, Houston, Texas, August 1987.

St. Johanser, J.T., and Harbidge, R.M. [1986] "Validating expert
systems: Problems & solutions in practice", Proc. of the Inter-
national Conference on Knowledge-Based Systems, London,
England, pp.215-229.

Suwa, M., Scott, A.C., and Shortliffe, E.H. [1982] "An approach to
verifying completeness and consistency in a rule-based expert
system", The A/ Magazine, 1982, pp.16-21.

Weiss, S.M., and Kulikowski, C.M. [1983] "Testing and evaluating
expert systems", Chapter 6 in A Practical Guide to Designing Ex-
pert Systems, Chapman and Hall, pp.138-156.

Zeil, S.J., and White, L.J. [1980] "Sufficient test sets for path
analysis testing strategies", OSU-CISRC-TR-80-6, The Computer
and Information Science Research Center, The Ohio State Univer-
sity, Columbus, Ohio 43210, July 1980.

THE AUTHORS

Dr. Chang received his Ph.D. in Electrical Engineering from the
University of California, Berkeley, CA in 1967. His background in-
cludes design and development of large-scale knowledge-based
systems, and research in program generation, very high level lan-
guages, compilers, rapid prototyping, relational data bases, natural
language query systems, mechanical theorem proving, and pat-
tern recognition. He wrote two books "Symbolic Logic and
Mechanical Theorem Proving" (with Dr. Richard Lee), and
"Introduction to Artificial Intelligence Techniques", and published
more than 50 papers. He is currently a co-principal investigator of
the Knowledge-Based Systems Validation project at the Lockheed
AI Center.

Dr. Stachowitz received his Ph.D. in Linguistics from the University
of Texas at Austin in 1969. His background includes design and
development of a large-scale knowledge-based mechanical trans-
lation system, computer hardware and software performance
evaluation, and research in applicative programming languages,
semantic data models, and analytic modeling and performance
evaluation of data base machine architectures. He also has per-
formed research in logic and functional knowledge base manipula-
tion and query languages. He is a Senior Research Scientist at
Lockheed's Artificial Intelligence Center and co-principal inves-
tigator of the Knowledge-Based Systems Validation project.

135

